Liquid-phase Oxidation Catalyzed by Cu(II)-Cl System. I. Oxidation of Cyclohexene

Sei-Ichiro Imamura, Toshiaki Banba, and Yoshinobu Takegami*

Department of Chemistry, Kyoto Institute of Technology, Sakyo-ku, Kyoto *Department of Hydrocarbon Chemistry, Kyoto University, Sakyo-ku, Kyoto (Received May 4, 1972)

Oxidation of cyclohexene catalyzed by Cu(II)-Cl systems was carried out in glacial acetic acid. The oxidation of cyclohexene with cupric chloride was highly accelerated by addition of various alkali chlorides. The decomposition of cyclohexenyl hydroperoxide, an intermediate product of the oxidation, was also accelerated by this catalyst system. Salts other than alkali chlorides had little effect. It was concluded that the activation of copper catalyst was due to the chloride ions which form a complex with copper. In the course of the reaction the catalyst loses its activity through ligand exchange with solvent molecule, acetic acid.

It is well known that the solubility of cupric salt is increased by the formation of complexes with alkali chlorides in acetic acid or acetonitrile. These catalyst systems are often used in the chlorination of olefines.¹⁾ Tamura used these systems in the synthetic reaction of vinyl acetate and discussed the form of the catalyst and its behaviour.²⁾

We have studied the oxidation of cyclohexene in detail to clarify the effect of various alkali chlorides on the catalytic activity of cupric chloride.

Experimental

Cyclohexene was synthesized by the dehydration of cyclohexanol.³⁾ The crude cyclohexene was washed with 5% aqueous sodium hydroxide, distilled twice and stored under nitrogen. Cyclohexenyl hydroperoxide was obtained by the autooxidation of cyclohexene. Cyclohexenol was obtained by the reduction of cyclohexenyl hydroperoxide with triphenylphosphine and cyclohexenone by the decomposition of cyclohexenyl hydroperoxide with cupric chloride-pyridine system.⁴⁾ Acetic acid was purified by the standard method. Cupric chloride and other reagents (anhydrous, GR grade) were used without further purification.

Oxidation was carried out using a reactor equipped with an atmospheric pressure gas burette. Fifteen ml of the mixture of cyclohexene and acetic acid containing a catalyst was warmed to the desired temperature (60°C) in a nitrogen atmosphere. Nitrogen was then replaced with oxygen and the reaction started. The decomposition of cyclohexenyl hydroperoxide was carried out in a nitrogen atmosphere and the rate of reaction was followed by iodometric titration of the remaining hydroperoxide.

Analysis of oxidation products was carried out using a Hitachi gas chromatograph 063 equipped with a frame-ionization detector. The column packing was *n*-decyl phthalate (1 m length) and the column temperature was 70—120°C (5°C/min). Visible spectra were measured by means of a Toshiba-Beckman UV spectrophotometer DBG.

Results and Discussion

Catalytic Activity of Cu(II)-Cl System. The effect of lithium chloride on the catalytic activity of cupric chloride was investigated and the results are shown in Fig. 1 and Table 1. In all cases, retardation of the reaction occurs after some uptake of oxygen. During the constant uptake of oxygen the reacting system is yellowish green or green but a deep blue colour appears

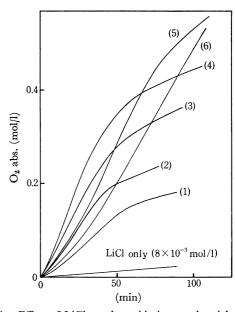


Fig. 1. Effect of LiCl on the oxidation catalyzed by CuCl₂. AcOH: 10 ml. Cyclohexene: 5 ml. CuCl₂: 8×10^{-3} mol/l. 60° C. LiCl ($\times10^{3}$ mol/l) (1) 0, (2) 8, (3) 24, (4) 48, (5) 80, (6) 200.

Table 1. $R_{\rm m}$ and maxima of absorbed O_2

$ m_{LiCl} \ (imes 10^{3} M)$	$R_{ m m} (imes 10^3 { m M/min})$	$Max.$ $O_2absd(M)$
0	3.82	0.136
8	6.82	0.164
24	8.45	0.237
48	10.90	0.306
80	9.13	0.461
200	6.90	0.821

AcOH: 10 ml.

Cyclohexene: 5 ml.

 $CuCl_2$: 8×10^{-3} mol/l. 60°C.

¹⁾ K. Ichikawa, S. Uemura, Y. Takagaki, and T. Hiramoto, Bull. Jap. Petrol. Inst., 12, 77 (1970).

²⁾ M. Tamura and A. Yasui, Kogyo Kagaku Zasshi, 72, 558 (1969).

³⁾ H. Gilman, "Organic Synthesis," Coll. Vol. I, p. 183, (1956).

⁴⁾ Cyclohexenone is obtained exclusively in the decomposition of cyclohexenyl hydroperoxide by cupric chloride in pyridine solution. This was reported by T. Banba, S. I. Imamura, and Y. Takegami at the 5th Oxidation Symposium in Osaka. (December 3, 1971).

after the retardation of oxygen uptake. Though the maximum rate of oxygen absorption (R_m) increases with an increase in the amount of lithium chloride added, a large excess (more than seven parts to one part of copper) results in a decrease in the rate. On the other hand, the maximum quantity of absorbed oxygen defined as the quantity of oxygen absorbed before the retardation occurs, increases linearly with the increase in the concentration of lithium chloride added. It is clear that lithium chloride increases and maintains the activity of the catalyst. As shown in Fig. 1 lithium chloride without copper salt has little activity.

Table 2. $R_{\rm m}$ and maxima of absorbed ${
m O_2}$

TABLE 2. $R_{\rm m}$ AND MAXIMA OF ABSORBED O_2				
Additiv (×10 ³ N		$R_{ m m}(imes 10^3 \ { m M/min})$	$Max.$ $O_2absd(M)$	
 LiCl	8	6.32	0.161	
	24	8.45	0.238	
	48	10.90	0.306	
$\mathrm{MgCl_2}$	8	5.13	0.185	
-	24	7.68	0.202	
	48	8.28	0.328	
NaCl	8	6.72	0.196	
	24	10.17	0.311	
	48	11.37	0.518	
KCl	8	9.73	0.184	
	24	13.25	0.390	
	48	14.00	0.546	
LiBr	8	6.22	0.112	
	24	6.32	0.131	
	48	4.12	0.136	
\mathbf{LiF}	8	4.82	0.161	
	24	5.60	0.109	
	48	5.78	0.098	
Li_2CO_3	8	6.22	0.136	
	24	6.45	0.169	
	48	6.03	0.174	
LiNO ₃	8	6.22	0.145	
	24	7.98	0.145	
	48	8.98	0.147	

AcOH: 10 ml. Cyclohexene: 5 ml. $CuCl_2$: 8×10^{-3} mol/l. 60° C.

The effects of various alkali metal chlorides and lithium salts on the catalytic activity of the cupric chloride were investigated and the results are shown in Table 2. We see that the addition of magnesium chloride, sodium chloride, or potassium chloride increases the maximum quantity of absorbed oxygen and the maximum rate of oxygen absorption (R_m) as in the case of lithium chloride, but the addition of lithium fluoride, lithium bromide, lithium carbonate, and lithium nitrate has little effect. It has been reported that lithium salts, which have a considerable covalent character, have a catalytic activity for oxidation through the activation of a molecular oxygen⁵⁾ or through the homolysis of a peroxide.⁶⁾ However, in our experi-

Table 3. Oxidation activity and λ_{max} of copper salt-LiCl system

Catalyst	Activity	$\lambda_{ m max}({ m m}\mu)$
CuCl ₂	0	
$+ \mathrm{LiCl}$	\circ	760
$Cu(acac)_2$	×	673
+ LiCl	\circ	710
CuF_2	×	672
$+ { m LiCl}$	0	674
$Cu_3(PO_4)_23H_2O$	×	
$+ { m LiCl}$	\circ	780
CuCO ₃	×	
+ LiCl	0	-
Cu-st*	×	675
+ LiCl	\circ	770

^{*} st: stearate

ments no such general effect could be seen with lithium salts except for lithium chloride as mentioned above. The order of the effect is found to be KCl>NaCl> LiCl≒MgCl₂. The greater the ionic character of the added chloride, the more effective for the oxidation. It can be said that the effect of the additives on the catalytic activity of copper salt is due to the anionic part, namely chloride ion, the activity of copper salt increasing through complex formation with chloride ions. In Table 3 the activity of various copper compounds-lithium chloride systems is shown together with the visible spectra. All copper salts tested are inactive with the exception of cupric chloride. However, oxidation takes place on addition of lithium chloride to these salts. The visible spectra of the inactive copper salts show an absorption at about 670 m μ , while the active catalyst systems containing lithium chloride have absorption in a wavelength region greater than 710 m_{\mu} The absorption seems to indicate the formation of various types of complexes. The effect of chloride ion on the catalytic activity of transition metals other than copper was also studied. In Table 4 the effect of lithium chloride on the catalytic activity of cobalt, nickel, and manganese chlorides is given. Hardly any or no effect can be seen for chlorides of other transition

The accumulation of cyclohexenyl hydroperoxide in the reaction system was measured at oxygen uptake

Table 4. Oxidation of cyclohexene with MCl₂–LiCl system

Catalyst	$ m LiCl \ (imes 10^2 mol/l)$	$R_{ m m} \ (imes 10^3 m mol/l \cdot min)$			
CuCl ₂	0	2.61			
	2.4	8.45			
CoCl_2	0	12.91			
	2.4	14.41			
$NiCl_2$	0	1.26			
	2.4	1.24			
CrCl_2	0	1.49			
	2.4	1.51			
$\mathbf{MnCl_2}$	0	3.16			
	2.4	3.55			

AcOH: 10 ml. Cyclohexene: 5 ml, 60° C. [Catalyst]: 8×10^{-3} mol/l.

⁵⁾ K. Ohkubo and T. Yamabe, Bull. Jap. Petrol. Inst., 12, 123 (1970).

⁶⁾ J. K. Kochi, B. M. Graybill, and M. Kurz, J. Amer. Chem. Soc., 86, 5257 (1964).

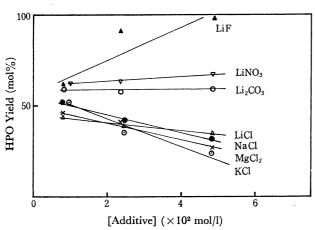


Fig. 2. Effect of additives on hydroperoxide (HPO) yield. AcOH: 10 ml. Cyclohexene: 5 ml. CuCl₂: 8×10⁻³mol/l. 60°C O₂absd: 0.136 mol/l.

of 0.136 mol/l. The results are given in Fig. 2. The addition of lithium carbonate or lithium nitrate has no effect upon the hydroperoxide yield, but in the case of various chlorides, the higher the concentration of the chloride, the lower the yield.

Product Distribution. The product distribution of the cyclohexene oxidation catalyzed by cupric chloride-lithium chloride system was investigated. Main products were cyclohexenyl hydroperoxide, cyclohexenol, and cyclohexenone. Two unknown high boiling products, I and II, were detected. Product I showed an infrared absorption at 1730 cm⁻¹ due to carbonyl group and the product II at 3450 cm⁻¹ due to hydroxyl group.⁷⁾ It was found that the product II contained

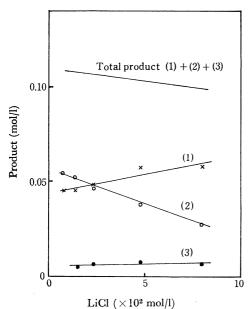


Fig. 3. Effect of LiCl on the product distribution.

AcOH: 10 ml. Cyclohexene: 5 ml. CuCl₂: 8×10⁻³mol/l.

60°C O₂absd.: 0.136 mol/l. (1) Cyclohexenone, (2) Cyclohexenyl hydroperoxide, (3) Cyclohexenol.

chlorine. The relation between the product distribution at the point where the oxygen uptake amounted to 0.136 mol/l and the quantity of lithium chloride added is shown in Fig. 3. We see that as the concentration of lithium chloride increases, the yield of the hydroperoxide decreases and that of cyclohexenone increases. The higher the concentration of lithium chloride, the lower the total yield of these products and on the contrary, the higher the total yield of the unknown products; which is not shown in the figure. Thus it seems that the chloride ion is consumed by the chlorination of the reaction product.⁸⁾

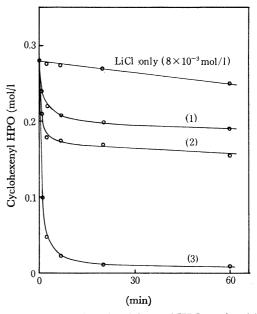


Fig. 4. Decomposition of cyclohexenyl HPO catalyzed by CuCl₂-LiCl.

AcOH: 10 ml. Cyclohexane: 10 ml. CuCl₂: 8×10⁻³mol/l.

60°C LiCl (mol/l) (1) 0, (2) 8×10⁻³, (3) 8×10⁻².

Decomposition of Cyclohexenyl Hydroperoxide Catalyzed by It was found that the addition Cu(II)-Cl System. of alkali chlorides decreased the yield of hydroperoxide, and thus the effect of lithium chloride on the decomposition of hydroperoxide catalyzed by copper salt was investigated. The result is given in Fig. 4. In this case also, lithium chloride increases the catalytic activity of the cupric chloride remarkably. Decomposition of hydroperoxide in the presence of lithium chloride alone does not proceed so much. The promotion of the catalytic activity by lithium chloride seems to be caused by the complex formation with copper. The decomposition curves resemble that of the oxidation of cyclohexene, viz., retardation occurs after the decomposition of a certain amount of hydroperoxide, the colour of the solution turning from yellowish green to deep blue. The quantity of the hydroperoxide decomposed by the time retardation occurs is proportional to the concentration of lithium chloride added. It seems that lithium chloride increases the rate of decomposition of hydroperoxide and consequently increases that of oxidation.

⁷⁾ By comparison with standard sample, substances I and II proved not to be 3-chlorocyclohexanone or 3-chlorocyclohexanol formed by the chlorination of the conjugated cyclohexenone which is one of the oxidation products. Moreover, they both did not correspond to 2-chlorocyclohexanone or cyclohexyl acetate.

⁸⁾ After the retardation occurred, chloride ion was scarcely detected in the solution with silver nitrate.

Change of the Dissolved State of the Catalyst System. In the oxidation of cyclohexene, the colour of the solution changes from yellowish green to green and finally to deep blue in the course of the reaction. Thus the visible spectra of the reaction system were observed and the effect of lithium chloride upon the change of the state of the catalyst was discussed. At the beginning of the reaction a feeble absorption is observed at 760 m μ which seems to be due to the Cu(II)-Cl complex.²⁾ Soon after oxidation takes place, the absorption disappears and a new absorption appears at 680 m μ . From a comparison with the standard reagent, the absorption proved to be due to the cupric acetate which seemed to be formed through the ligand exchange of the catalyst with the solvent molecule, acetic acid.

The time dependence of absorption is given in Fig. 5.

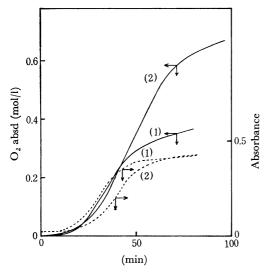


Fig. 5. Time dependence of the visible spectrum $(\lambda_{\rm ms\,x}=680{\rm m}\mu)$ AcOH: 10 ml. Cyclohexene: 5 ml. CuCl₂: $8\times10^{-3}{\rm mol/l}$. $60^{\circ}{\rm C}$ LiCl (mol/l) (1) 8×10^{-3} , (2) 4.8×10^{-2} .

We see that the absorbance increases during the reaction until the point where the rate of the oxidation begins to decrease and then remains constant. It seems that all the copper turns to cupric acetate at the end of the reaction. When the quantity of the lithium chloride increases, the time is lengthened at which the absorbance becomes constant [Curve (2), Fig. 5]. At the point where the catalyst became deactivated, addition of more lithium chloride recovered the activity of the system. This shows that the inactive cupric acetate is partly changed to the active Cu(II)-Cl complex. It can thus be concluded that lithium chloride contributes to maintain the activity of the catalyst and deactivation is caused by the consumption of chloride ions and the solvent molecules enter into the ligand site of the copper forming inactive cupric acetate.

Effect of the Catalyst Concentration. Dependence of the oxidation rate on the catalyst concentration was investigated. When the concentration of the copper catalyst is increased at a constant concentration of lithium chloride, R_m increases but reaches its maximum value at the concentration of copper about 2.4×10^{-2} mol/l, then remains constant [Curve (1), Fig. 6]. When

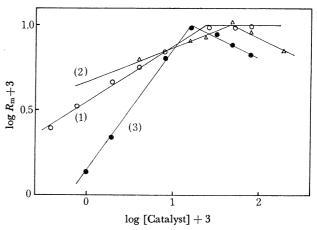


Fig. 6. $R_{\rm m}$ vs. catalyst concentration. AcOH: 10 ml. Cyclohexene: 5 ml. 60°C. (1) [CuCl₂] Dependence, [LiCl] 8×10^{-3} mol/l. (2) [LiCl] Dependence, [CuCl₂] 8×10^{-3} mol/l. (3) $\begin{bmatrix} {\rm CuCl_2-LiCl} \\ 1 : 1 \end{bmatrix}$ Dependence

the concentration of lithium chloride was made to vary at a constant concentration of copper [Curve (2)], $R_{\rm m}$ reaches the maximum value for a mole ratio of lithium to copper, ca. 7:1, then begins to decrease. The concentration of the Cu(II)-Cl was made to vary at constant lithium to copper concentration of unity. It is shown that $R_{\rm m}$ also reaches the maximum value at the complex concentration of about 2.0×10^{-2} mol/l and then decreases [Curve (3)]. In all cases the maximum value of R_m is about 1.0×10^{-2} mol/ $1 \cdot \text{min}$. From curves (2) and (3), it seemes that excess lithium chloride retards the reaction. An explanation for the phenomenon may be that excess lithium chloride blocks the active sites of the copper catalyst and prevents hydroperoxide molecules from approaching them. Another explanation may be that while the active species is CuCl₃-, excess lithium chloride forms a complex of the type CuCl₄²⁻⁹⁾ which retards the reaction.

Oxidation Scheme. From the results so far obtained, the oxidation mechanism is schematically drawn as follows.

$$CuCl_2 + Cl^- \Longrightarrow CuCl_3^- (CuCl_4^{2-})$$
 (1)

$$RH \longrightarrow R \cdot$$
 (2)

$$R \cdot + O_2 \longrightarrow ROO \cdot$$
 (3)

$$ROO \cdot + RH \longrightarrow ROOH + R \cdot$$
 (4)

$$ROOH + CuCl_3^- (CuCl_4^{2-}) \longrightarrow ROO \cdot \text{ or } RO \cdot$$
 (5)

$$\begin{array}{c} \text{CuCl}_3^{-} \text{ (CuCl}_4^{2-}\text{)} \xrightarrow[O_2, \, S]{} \\ \text{Cu(OAc)}_2 + \text{Chlorination product} \\ & \downarrow \text{Cl}^{-} \end{array} \tag{6}$$

$$Cu(Cl)(OAc)$$
, $CuCl_2$, $CuCl_3^-$, $CuCl_4^{2-}$ (7)

In reaction (1) the copper salt forms a complex with chloride ions. It seems that the complex is not of a single form but a mixture of various forms. In reactions (2)—(4) cyclohexenyl hydroperoxide is formed.

⁹⁾ C. L. Jenkins and J. K. Kochi, J. Org. Chem., 36, 3103 (1971).

In reaction (5) the hydroperoxide is decomposed by the Cu(II)-Cl complex. The increase in the rate of oxidation seems to be due to the high activity of the complex to promote the step. As shown in reaction (6), during oxidation, presumably in the decomposition of hydroperoxide, some ligand exchange occurs through the chlorination of a third body (cyclohexene or its oxidation product), represented by S in reaction (6), and cupric acetate is formed causing deactivation of the catalyst system. In reaction (7) addition of alkali

metal chlorides to the deactivated system restores the activity of the system.

In conclusion, it can be said that in acetic acid solvent, chloride ion increases and maintains the catalytic activity of the copper salt as its ligand.

The authors are very much indebted to Professor Hiroshi Teranishi for his guidance and encouragement through this work. They also wish to thank Dr. Sakae Uemura for his helpful advice and discussions.